电商信息资讯,更全更新信息实报!
主页 > 知识 > > 正文

京东云语音语义领域8篇论文被国际顶会发表

来源:网络整理 发布时间:2021-11-15 00:04 标签:人工智能文本分类语义分析
浏览:

慧聪家电:技术的价值往往体现在其应用过程中,便随着人工智能的大规模应用,人工智能的工程化能力正在被人们所关注,根据Gartner发布的2021年重要战略科技趋势,为将人工智能转化为生产力,就必须转向人工智能工程化这门专注于各种人工智能操作化和决策模型(例如机器学习或知识图)治理与生命周期管理的学科。

那么,人工智能的基础研究不再重要了吗?

答案是否定的。纵观全球各科技企业,无不例外在持续加大对人工智能基础研究的投入,以语音语义为例,作为人工智能的重要组成部分,对该领域的研究正不断突破,为人机的交互模式带来了更多的可能。

2021年,京东云横扫多个国际顶级学术会议,多篇论文获被发表,细分领域跨域长文的机器阅读理解、内容生成、知识融合、对话推荐、图神经网络和可解释的增量学习等。

京东云语音语义领域8篇论文被国际顶会发表

下面以其中的8篇论文为例,分享各自在解决所要攻克的问题、提出的新方法以及取得的可被行业借鉴的成果。

论文标题:RoR: Read-over-Read for Long Document Machine Reading Comprehension

论文链接:

发表刊物:Findings of EMNLP 2021

Motivation: 大规模预训练语言模型在多个自然语言处理任务上取得了显著的成果,但受限于编码长度(例如电商 知识图谱,BERT只能一次性编码512个WordPiece字符),无法有效地应用于多种长文本处理任务中,例如长文本阅读理解任务。

Solution: 对此,本论文提出了从局部视角到全局视角的重复阅读方法RoR(如下图所示),可提高超长文本的阅读理解能力。具体而言,RoR 包括一个局部阅读器和一个全局阅读器。首先,给定的长文本会被切割为多个文本片段。然后,局部阅读器会为每个文本片段预测出一组局部答案。这些局部答案接下来会被组装压缩为一个新的短文本来作为原始长文档的压缩版本。全局阅读器会进一步从此压缩文本中预测出全局答案。最终,RoR使用一种投票策略来从局部和全局答案中选择最终预测。

Experimental Result:在两个长文本阅读理解基准 QuAC 和 TriviaQA 上,大量实验证明了RoR可以有效提高预训练语言模型在长文档阅读的建模能力。RoR在公开对话阅读理解榜单QuAC()上获得第一名的优异成绩。

京东云语音语义领域8篇论文被国际顶会发表

图1:QuAC官方Leaderboard(截止2021/10)

论文标题:Learn to Copy from the Copying History: Correlational Copy Network for Abstractive Summarization

发表刊物:EMNLP 2021

京东云语音语义领域8篇论文被国际顶会发表

Motivation: 复制机制是生成式自动文摘模型的常用模块电商 知识图谱,已有模型使用注意力概率作为复制概率,忽视了复制历史的影响。

Solution: 本论文提出了一种新的复制机制(Correlational Copying Network,CoCoNet),该机制可以使用复制历史指导当前的复制概率。具体来说,CoCoNet在计算每一步的复制概率时,不仅会参考当前时刻的注意力概率,还会通过相似度和距离度量,将历史时刻的复制概率转移到当前时刻,从而提高复制行为的连贯性和合理性。此外,我们还提出一种Correlational Copying Pre-training (CoCo-Pretrain) 子任务,进一步增强CoCoNet的复制能力。

Experimental Result:本论文提出的复制机制,可以应用于一系列文本摘要相关应用中。我们在新闻摘要数据集(CNN/DailyMail dataset)和对话摘要数据集(SAMSum dataset)上的效果(如表1、2)超过已有的生成式摘要模型。

发表评论
验证码: 点击我更换图片

注:网友评论仅供其表达个人看法,并不代表本站立场。

热门文章

  • 2020年国内十大生鲜电商平台排名!
    2020年国内十大生鲜电商平台排名!

    2020年国内十大生鲜电商平台排名!

    目前除了我们熟知的天猫生鲜、京东生鲜等生鲜平台,还有哪些生鲜电商o2o平台呢?接下来我们就一起来看看2020年十大生鲜电商平台有哪些!每日一淘是一个...

  • 知识图谱完整项目实战(附源码)(3)
    知识图谱完整项目实战(附源码)(3)

    知识图谱完整项目实战(附源码)(3)

    本文是《知识图谱完整项目实战(附源码)》系列博文的第3篇:汽车知识图谱系统架构设计,主要介绍汽车领域知识图谱系统的总体架构设计和关键技术。...

  • 为电商而生的知识图谱,如何感应用户需
    为电商而生的知识图谱,如何感应用户需

    为电商而生的知识图谱,如何感应用户需

    如何建设一个比较通用的面向应用的概念体系,支持根据业务需求提供查询服务,已经迫在眉睫。mining流程后持续扩大挖掘覆盖),目前数据已经作为类目预...

  • 阿里知识图谱首次曝光:每天千万级拦截
    阿里知识图谱首次曝光:每天千万级拦截

    阿里知识图谱首次曝光:每天千万级拦截

    阿里妹导读:借助阿里知识图谱的建设,阿里电商平台管控从过去的“巡检”模式升级为发布端实时逐一检查。在海量的商品发布量的挑战下,最大可能地...

  • 互联网+生鲜电商解决方案 生鲜电商O2O解
    互联网+生鲜电商解决方案 生鲜电商O2O解

    互联网+生鲜电商解决方案 生鲜电商O2O解

    生鲜电商O2O解决方案(38页珍藏版)》请在人人文库网上搜索。度上限制了生鲜电商的发展。方的农业生鲜交易平台存在小、弱格局。、配送企业、线下门...

人物

更多 >
人物马云:区块链不是泡沫
人物李彦宏:百度有自己的价值观 未来“AI战
人物吴欣鸿:美图秀秀下一个十年发力图片社
人物最贵的离职:陆奇带走了百度900亿市值
人物刘强东代言上瘾,这次为核桃代言

专题

更多 >
广告位