电商信息资讯,更全更新信息实报!
主页 > 知识 > > 正文

知识图谱(Knowledge Graph)之综述理解

来源:网络整理 发布时间:2021-08-04 17:17 标签:实体关系图关系模型语义分析
浏览:

编辑推荐:

本文主要介绍知识图谱的研究背景及其意义,知识图谱的发展、定义

大规模知识库 关键技术、 典型应用以及知识图谱的问题与挑战。

本文来自于博客园,由火龙果软件Alice编辑、推荐。

知识图谱技术是人工智能技术的重要组成部分,以结构化的方式描述客观世界中的概念、实体及其键的关系。知识图谱提技术提供了一种更好的组织、管理和理解互联网海量信息的能力,将互联网的信息表达成更接近于人类认知世界的形式。因此,建立一个具有语义处理能力与开放互联能力的知识库,可以在智能搜索、智能问答、个性化推荐等智能信息服务重产生应用价值。

知识图谱的研究背景及其意义

单单从字面上理解,知识图谱应该是一种更加结构化(主要是基于图)的知识库,将散乱的知识有效的组织起来,方便人们的查阅,而不是之前那样一堆文在摆在眼前,没有一目了然的赶脚,哈哈哈。所以,很容易想到,知识图谱的产生背景就是,第一方面互联网信息的暴增,以及信息的杂乱无章,第一个意义就是为了人们更加快速有效的检索某一信息。,第二方面,随着现在科学技术的进步与发展,很多先进技术都应运而生(比如深度学习),人们期望机器像人一样可以去理解海量的网络信息,期望可以更快、准确、智能的获取到自己需要的信息,为了满足这种需求,智能化的知识图谱应运而生,其研究意义还是在于方便人类!(有木有发现,几乎所有的研究意义都是这四个字呐)(在这里我只是用一种简单理解的方式来表达,当然还有更多的研究意义,只不过知识图谱刚刚开始火热起来的时候,就是应用在信息检索方面。为了容易理解以及方便记忆,记住这个就ok了)

一般情况下研究背景就体现了研究意义。以下是官网语言描述,非完美主义者可以跳过这些繁琐的文字表达,哈哈哈。

伴随着web技术的不断演进与发展,人类先后经历了以文档互联为主要特征的“web1.0”时代,以数据互联为特征的“web 2.0”时代,正在迈向基于知识互联的崭新“Web 3.0”时代。

知识互联网的目标是构建一个人与机器都可以理解的万维网,使得人们的网络更加智能化。然而,由于万维网上的内容多源一直,组织结构松散,给大数据环境下的知识互联带来了极大的挑战。因此,人们需要根据大数据环境下的知识组织原则,从新的视角去探索既符合网络信息资源发展变化又能适应用户人之需求的知识互联方法,从更深层次上揭示人类认知的整体性关联性。知识图谱以其强大的语义处理能力与开放互联能力,使web3.0提出的“知识之网”远景成为了可能。

进入21世纪,随着互联网的蓬勃发展以及知识的爆炸式增长,搜索引擎被广泛使用。传统的搜索引擎技术能够根据用户查询快速排序网页,提高信息检索的效率。然而,这种网页检索效率并不意味这用户能够快速准确的获取信息和知识,对于搜索引擎返回的大量结果还需要进行人工排查和筛选。面对互联网上不断增加的海量信息,网页检索方式(仅包含网页和网页之间链接的传统文档)已经不能满足人们迅速获取所需信息和全面掌握信息资源的需求。为了满足这种需求,知识图谱技术应运而生。它们力求通过将知识进行更加有序、有机的组织起来,使用户可以更加快速、准确地访问自己需要的知识信息,并进行一定的知识挖局和智能决策。从机构知识库到互联网搜索引擎,近年来不少学者和机构纷纷在知识图谱上深入研究,希望以这种更加清晰、动态的方式(注:知识图谱一定是动态的,不断更新的,不是静止的,不然,就是去了其真正的意义)展现各种概念之间的联系,实现知识的智能获取和管理。

知识图谱的发展

20世纪中叶,普莱斯等人提出使用引文网络来研究当代科学发展的脉络的方法,首次提出了知识图谱的概念。(注意:这里的知识图谱和本博文主要介绍的知识图谱不太一样,在此是指MappingKnowledge Domain,而本博文主要介绍的知识图谱是指Knowledge Graph)1977年,知识工程的概念在第五届国际人工智能大会上被提出,以专家系统为代表的知识库系统开始被广泛研究和应用,直到20世纪90年代,机构知识库的概念被提出,自此关于知识表示、知识组织的研究工作开始深入开展起来。机构知识库系统被广泛应用于各科研机构和单位内部的资料整合以及对外宣传工作。2012年11月Google公司率先提出知识图谱(KnowledgeGraph,KG)的概念,表示将在其搜索结果中加入知识图谱的功能。其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。据2015年1月统计的数据,Google构建的KG已经拥有5亿个实体,约35亿条实体关系信息,已经被广泛应用于提高搜索引擎的搜索质量。虽然知识图谱(KnowledgeGraph)的概念较新,但它并非是一个全新的研究领域,早在2006年,Berners Lee就提出了数据链接(linkeddata)的思想,呼吁推广和完善相关的技术标准如URI(Uniform resource identifier),RDF(resourcediscription framework),OWL(Web ontology language),为迎接语义网络的到来做好准备。随后掀起了一场语义网络研究的热潮,知识图谱技术正是建立在相关的研究成果之上的,是对现有语义网络技术的一次扬弃和升华。

发表评论
验证码: 点击我更换图片

注:网友评论仅供其表达个人看法,并不代表本站立场。

近期活动

更多 >

热门文章

  • 为电商而生的知识图谱,如何感应用户需
    为电商而生的知识图谱,如何感应用户需

    为电商而生的知识图谱,如何感应用户需

    如何建设一个比较通用的面向应用的概念体系,支持根据业务需求提供查询服务,已经迫在眉睫。mining流程后持续扩大挖掘覆盖),目前数据已经作为类目预...

  • 2020年国内十大生鲜电商平台排名!
    2020年国内十大生鲜电商平台排名!

    2020年国内十大生鲜电商平台排名!

    目前除了我们熟知的天猫生鲜、京东生鲜等生鲜平台,还有哪些生鲜电商o2o平台呢?接下来我们就一起来看看2020年十大生鲜电商平台有哪些!每日一淘是一个...

  • 阿里知识图谱首次曝光:每天千万级拦截
    阿里知识图谱首次曝光:每天千万级拦截

    阿里知识图谱首次曝光:每天千万级拦截

    阿里妹导读:借助阿里知识图谱的建设,阿里电商平台管控从过去的“巡检”模式升级为发布端实时逐一检查。在海量的商品发布量的挑战下,最大可能地...

  • 互联网+生鲜电商解决方案 生鲜电商O2O解
    互联网+生鲜电商解决方案 生鲜电商O2O解

    互联网+生鲜电商解决方案 生鲜电商O2O解

    生鲜电商O2O解决方案(38页珍藏版)》请在人人文库网上搜索。度上限制了生鲜电商的发展。方的农业生鲜交易平台存在小、弱格局。、配送企业、线下门...

  • 电商平台的知识图谱构建方法、装置、设
    电商平台的知识图谱构建方法、装置、设

    电商平台的知识图谱构建方法、装置、设

    2019.05.2019.01.低的问题。字段对应的类目网络组成电商平台的知识图谱。电商平台的知识图谱构建方法、装置、设备及存储介质的权利要求说明书内容是.电...

人物

更多 >
人物马云:区块链不是泡沫
人物李彦宏:百度有自己的价值观 未来“AI战
人物吴欣鸿:美图秀秀下一个十年发力图片社
人物最贵的离职:陆奇带走了百度900亿市值
人物刘强东代言上瘾,这次为核桃代言

专题

更多 >
广告位