电商信息资讯,更全更新信息实报!
主页 > 知识 > > 正文

应用实践 | 电商应用——一种基于强化学习的特定规则学习模型

来源:网络整理 发布时间:2021-08-08 01:05 标签:机器学习pv强化学习
浏览:

作者:汪寒,浙江大学硕士,主要研究方向为知识图谱和自然语言处理。

应用场景

在电商实际应用中,每个商品都会被挂载到若干个场景,以图结构中的节点形式存在。商品由结构化信息表示,以键值对(Property:Value)形式(后称PV)存在。场景(LifeStyle)的价值则在于打通商品实体之间的联通,提供跨域的实体搭配,因此新的商品必须要通过规则库中的规则挂载到特定的场景才能进入电商的运营体系。商品场景的样例如下图所示。

图1 商品场景样例

规则的作用则包括挂载新的商品以及为已有的商品新增挂载场景,目前规则库中的规则主要由人工构造,通过审核之后才能进入规则库,商品场景挂载的规则特点是Body部分只由PV组成,Head部分只包含单个场景。规则的形式如下:

人工构造规则的方法效率低,人工成本高,因此商品场景挂载规则学习任务就是利用算法从现有的商品场景数据中生成规则,提高规则生成的效率,降低人工成本。现有规则库中的规则样例如下表所示。

谷歌知识图谱 用户1:1_电商 知识图谱_谷歌知识图谱官网

Motivation

目前业界常用的规则学习baseline是关联规则挖掘,用于发现数据集中项与项之间的关系,通过挖掘数据集中存在的频繁项集来生成规则。这种方法适合数据项之间没有差异的数据集,比如著名的购物篮分析应用中,不同的商品都可以看作是同种item。而在实际应用中常常需要挖掘不同类型数据项之间的规则电商 知识图谱,数据集中的元素项之间存在差异,不能简单地将所有数据项都看作同种item,分析商品场景挂载数据可以看出,商品的 PV 对与场景之间存在差异,若将其视为同种数据项,用通用的规则挖掘算法学习,就舍弃了商品 PV 对与场景之间的挂载关系信息以及差异。

且关联规则挖掘是通用的规则生成算法,在频繁项挖掘阶段需要耗费大量时间挖掘无关的频繁项,无法针对特定的规则进行优化,所以关联规则挖掘算法无论是效率还是产出结果的指标都偏低。因此,针对商品场景挂载数据生成规则,需要用到task-specific 算法,算法需要考虑到商品 PV 对与场景之间的差异以及挂载关系信息,且生成的规则应满足 Body 部分为 PV 对,Head 部分为单个场景的形式。

算法描述

首先分析数据,商品由20-50个PV对组成,每个商品会挂载到若干个场景,而输出的规则的body部分为1-5个PV对,head部分为单个场景。因此可以认为,对一个商品的PV对赋予不同的权重就可以让这个商品挂载到不同的场景,输出那些权重超过阈值的PV对作为body部分就可以得到一条规则,从而就可以得到一个算法,就是用一个神经网络来对PV对赋予权重,在训练完毕后将高权重的PV输出作为规则的body部分。

因此,首先要解决的问题是如何设计一个神经网络模型来为PV对赋予权重,PV对的权重是离散值0或1,0表示舍弃当前PV对,1表示选择当前PV对作为body部分。把商品包含的PV对看作序列,赋予权重的过程就是一个经典的序列决策过程,而这个序列决策过程是没有标注数据的电商 知识图谱,所以无法用监督学习训练,但整个序列是有标注的,即权重赋予后的PV对序列能否挂载到当前场景。因此,可以把整个问题建模成一个强化学习问题,训练一个智能体来完成权重赋予的过程。

然后,要解决的第二个问题是如何为这个智能体返回reward,即如何判断智能体输出的PV对子序列可以让商品挂载到特定场景,且这个子序列的长度不超过5。判断挂载是否正确可以看作是一个分类问题,预训练一个FastText网络作为分类器,输入为PV对序列,输出为PV对序列所对应的类(即场景),来判断当前PV子序列能否分类到对应场景。同时,在reward function中加入子序列长度项,让智能体尽可能选择较短的子序列。

发表评论
验证码: 点击我更换图片

注:网友评论仅供其表达个人看法,并不代表本站立场。

近期活动

更多 >

热门文章

  • 为电商而生的知识图谱,如何感应用户需
    为电商而生的知识图谱,如何感应用户需

    为电商而生的知识图谱,如何感应用户需

    如何建设一个比较通用的面向应用的概念体系,支持根据业务需求提供查询服务,已经迫在眉睫。mining流程后持续扩大挖掘覆盖),目前数据已经作为类目预...

  • 2020年国内十大生鲜电商平台排名!
    2020年国内十大生鲜电商平台排名!

    2020年国内十大生鲜电商平台排名!

    目前除了我们熟知的天猫生鲜、京东生鲜等生鲜平台,还有哪些生鲜电商o2o平台呢?接下来我们就一起来看看2020年十大生鲜电商平台有哪些!每日一淘是一个...

  • 阿里知识图谱首次曝光:每天千万级拦截
    阿里知识图谱首次曝光:每天千万级拦截

    阿里知识图谱首次曝光:每天千万级拦截

    阿里妹导读:借助阿里知识图谱的建设,阿里电商平台管控从过去的“巡检”模式升级为发布端实时逐一检查。在海量的商品发布量的挑战下,最大可能地...

  • 互联网+生鲜电商解决方案 生鲜电商O2O解
    互联网+生鲜电商解决方案 生鲜电商O2O解

    互联网+生鲜电商解决方案 生鲜电商O2O解

    生鲜电商O2O解决方案(38页珍藏版)》请在人人文库网上搜索。度上限制了生鲜电商的发展。方的农业生鲜交易平台存在小、弱格局。、配送企业、线下门...

  • 电商平台的知识图谱构建方法、装置、设
    电商平台的知识图谱构建方法、装置、设

    电商平台的知识图谱构建方法、装置、设

    2019.05.2019.01.低的问题。字段对应的类目网络组成电商平台的知识图谱。电商平台的知识图谱构建方法、装置、设备及存储介质的权利要求说明书内容是.电...

人物

更多 >
人物马云:区块链不是泡沫
人物李彦宏:百度有自己的价值观 未来“AI战
人物吴欣鸿:美图秀秀下一个十年发力图片社
人物最贵的离职:陆奇带走了百度900亿市值
人物刘强东代言上瘾,这次为核桃代言

专题

更多 >
广告位